热门搜索:
首页
文库
书籍之外
登录
注册
作者:
日期:2023-01-26
出版:
分享
本卷书籍为读者提供了紧凑、刺激和多方面的可解释性介绍,这是开发有见地的统计和机器学习方法以及在商业和工业中交流建模结果的关键问题。 在工业4.0的背景下,机器学习工具的可解释性,模型输出的可推广性和敏感性分析的概念提供了不同的观点。此外,本书还探讨了人工智能和增材制造中大数据挖掘和监控的方差鲁棒分析的集成,并通过随机森林和灵活的广义加法模型以及相关软件资源和实际示例对可解释性提出了新的见解。
在工业4.0的背景下,机器学习工具的可解释性,模型输出的可推广性和敏感性分析的概念提供了不同的观点。此外,本书还探讨了人工智能和增材制造中大数据挖掘和监控的方差鲁棒分析的集成,并通过随机森林和灵活的广义加法模型以及相关软件资源和实际示例对可解释性提出了新的见解。
《数据战略:如何从大数据、分析和人工智能世界中获利, 第2版》
《系统设计访谈 – 内部人士指南》
《AI Engineering: Building Applications with Foundation Models》---从模型到产品:揭秘AI工程的关键技术与设计思路
解锁AI潜能:《DeepSeek提示工程》助你效率飙升与轻松创收
《网络安全:环境技术、物联网和工业 4.0 的影响》
0条评论